设△ABC的三边a,b,c的长度均为自然数,且a≤b≤c,a+b+c=13,则以a,b,c为三边的三角形共有________个.

发布时间:2020-08-07 00:26:11

设△ABC的三边a,b,c的长度均为自然数,且a≤b≤c,a+b+c=13,则以a,b,c为三边的三角形共有________个.

网友回答

5
解析分析:根据题意及三角形三边关系可求得c的取值,从而可确定c的值,从而不难求得可构成三角形的个数,注意考虑是否符合三角形三边关系.

解答:∵a+b+c=13
∴a+b=13-c
∵a+b>c
∴13-c>c
∴c<
∵a+b+c=13
∴点c可取的值为5,6
∴三边可能的取值为:a34123b54654c55666∴以a,b,c为三边的三角形共有5种.

点评:此题主要考查学生对三角形三边关系的理解及运用能力,关键是确定点c的值.
以上问题属网友观点,不代表本站立场,仅供参考!