已知,a、b、c为△ABC的边长,b、c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.

发布时间:2020-08-07 06:29:46

已知,a、b、c为△ABC的边长,b、c满足(b-2)2+|c-3|=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.

网友回答

解:∵(b-2)2+|c-3|=0,
∴b-2=0,c-3=0,
∴b=2,c=3,
∵|a-4|=2,
∴a=6或2,
当a=6,b=2,c=3时不能构成三角形,
当a=2,b=2,c=3时周长为7,是等腰三角形.
解析分析:根据a为方程|a-4|=2的解,可知a=6或2,再根据(b-2)2+|c-3|=0,可知b-2=0,c-3=0,可知b,c的值,再根据三角形的两边之和大于第三遍即可判断出△ABC的形状.

点评:本题考查了三角形中两边之和大于第三边,以及非负数的性质,根据非负数的性质求出三边的长是关键,难度适中.
以上问题属网友观点,不代表本站立场,仅供参考!