如图,已知在△ABC中,点D是BC边上一点,DA⊥AB,AC=12,BD=7,CD=9.
(1)求证:△ACD∽△BCA;
(2)求tan∠CAD的值.
网友回答
(1)证明:∵BD=7,CD=9,
∴BC=16
∵AC=12
∴,.
∴.
∵∠C=∠C,
∴△ACD∽△BCA.
(2)∵△ACD∽△BCA,
∴∠CAD=∠B,.
∵DA⊥AB,
∴tanB==.
∴tan∠CAD=.
解析分析:(1)根据三角形的边长,即可正确两个三角形的两边的比对应相等,而夹角相等,即可证得两个三角形相似;
(2)根据相似三角形的性质可以证得:△ABD是直角三角形,根据三角函数的定义即可求解.
点评:本题考查了相似三角形的判定与性质,以及三角函数的定义,正确证得两个三角形相似是关键.