如图,P为∠MON平分线上一点,PA⊥OM于A,PB⊥ON于B,求证:OP垂直平分AB.

发布时间:2020-08-08 17:35:35

如图,P为∠MON平分线上一点,PA⊥OM于A,PB⊥ON于B,
求证:OP垂直平分AB.

网友回答

证明:∵P为∠MON平分线上一点,PA⊥OM,PB⊥ON,
∴PA=PB,∠PAO=∠PBO=90°,
在Rt△PAO和Rt△PBO中,

∴Rt△PAO≌Rt△PBO(HL),
∴OA=OB,
∵OP平分∠AOB,
∴OP垂直平分AB(三线合一).
解析分析:根据角平分线性质得出PA=PB,根据HL证Rt△PAO≌Rt△PBO,推出OA=OB,根据等腰三角形性质推出即可.

点评:本题考查了全等三角形的性质和判定,角平分线性质,等腰三角形性质的应用,主要考查学生的推理能力.
以上问题属网友观点,不代表本站立场,仅供参考!