在正方形ABCD中,M为AB的中点,直线DM交AC于N,交BC的延长线于P
(1)求证:PM:MN:ND=3:1:2;
(2)当M为AB三等分点(AM═AB)时,其它条件不变,PM:MN:ND的值又有怎样的关系?请你写出猜想,并加以证明;
(3)当M为AB的n等分点时,其它条件不变,PM:MN:ND又有怎样的关系?直接写出你的猜想,不必证明.
网友回答
(1)证明:∵四边形ABCD是正方形,
∴AB=CD,AB∥CD,
∵M为AB的中点,
∴AM=BM=AB=CD,
∵AB∥CD,
∴△ANM~△CND,△PMB~△DMA
∴MN:ND=AM:DC=1:2,PM:MD=BM:AM=1:1
∴PM:MN:ND=3:1:2;
(2)PM:MN:ND=8:1:3,
证明:∵四边形ABCD是正方形,
∴AB=CD,AB∥CD,
∵M为AB的三等份点,
∴AM=AB=CD,
∵AB∥CD,
∴△ANM~△CND,△PMB~△DMA,
∴MN:ND=AM:DC=1:3,PM:MD=BM:AM=2:1,
设MN=a,ND=3a,MD=4a,PM=8a,
∴PM:MN:ND=8a:a:3a;
PM:MN:ND=8:1:3;
(3)PM:MN:ND=(n2-1):1:n.
解析分析:(1)根据正方形性质得出AB=CD,AB∥CD,得出△ANM~△CND,△PMB~△DMA根据相似三角形性质得出MN:ND=AM:DC=1:2,PM:MD=BM:AM=1:1,即可得出