如图,等边三角形ABC内有一点P,PE⊥AB,PF⊥AC,PD⊥BC,垂足分别为E,F,D,且AH⊥BC于H,试用三角形面积公式证明:PE+PF+PD=AH.

发布时间:2020-08-07 15:52:46

如图,等边三角形ABC内有一点P,PE⊥AB,PF⊥AC,PD⊥BC,垂足分别为E,F,D,且AH⊥BC于H,试用三角形面积公式证明:PE+PF+PD=AH.

网友回答

证明:连接AP,BP,CP,
∵PE⊥AB,PF⊥AC,PD⊥BC,AH⊥BC于H,
∴S△ABC=BC?AH,S△APB=AB?PE,S△APC=AC?PF,S△BPC=BC?PD
∵S△ABC=S△APB+S△APC+S△BPC
∴BC?AH=AB?PE+AC?PF+BC?PD,且AB=BC=AC,
即PE+PF+PD=AH.
解析分析:本题可通过三角形的面积来求证,连接AP,BP,CP后,分别表示出三角形APB,BPC,APC和三角形ABC的面积,根据三角形ABC的面积等于这三个小三角形的面积和,我们将三个三角形的面积表达式相加后就会得出PE+PF+PD=AH.

点评:本题考查了等边三角形的性质及三角形的面积等知识;本题直接找线段间的关系不容易得出结论,但是通过分割面积法就容易证得,所以解题时思路要开阔,面积法求线段的关系是很重要的方法,注意掌握.
以上问题属网友观点,不代表本站立场,仅供参考!