【已知log2[log3(log4x)]=log3[log4(log2y)]=0,求x+y】

发布时间:2021-03-19 15:53:50

已知log2[log3(log4x)]=log3[log4(log2y)]=0,求x+y

网友回答

因为log2[log3(log4x)]=0
所以:log3(log4x)=1
进一步:log4x=3
所以x=4^3=64,.
log3[log4(log2y)]=0
则有:log4(log2y)=1
进一步:log2y=4
所以:y=2^4=16.
则有:x+y=64+16=80.
======以下答案可供参考======
供参考答案1:
80供参考答案2:
因为 log2[log3(log4x)]=log3[log4(log2y)]=0
所以 log3(log4x)=log4(log2y)=1
所以 log4x=3,log2y=4
所以 x=4^3=64,y=2^4=16
x+y=80
供参考答案3:
log2[log3(log4x)]=0=log2 1
log3 (log4 x)=1=log3 3
log4 x=3=log4 4^3
x=4^3=64
log3[log4(log2y)]=0
=log3 1log4 (log2 y)=1=log4 4
log2 y=4=log2 2^4
y=2^4=16
所以x+y=64+16=80
供参考答案4:
log3(log4x)=1 log4(log2y)=1
log4x=3
log2y=4x=64 y=16
x+y=80
以上问题属网友观点,不代表本站立场,仅供参考!