若△ABC是边长为6的等边三角形,点F是△ABC的重心,连接AF延长至点E,交BC于D,CF∥BE,则四边形BECF的周长为________.
网友回答
8
解析分析:根据等边三角形的性质可知外心,重心,垂心三心合一;且内角均为60°;根据勾股定理可求出AD的长,利用重心的性质可求出DF的长,再证明四边形BECF是菱形即可求出其周长.
解答:∵△ABC是边长为6的等边三角形,点F是△ABC的重心,
∴AB=BC=6,AD⊥BC,
∴BD=CD=BC=3,
∴AD==3,
∴FD=AD=,
∵AD⊥BC,BD=CD,
∴BF=CF,BE=CE,
∴∠BEF=∠CEF,
∵CF∥BE,
∴∠CFE=∠BEF,
∴∠CEF=∠CFE,
∴CF=CE,
∴BE=CE=CF=BF,
∴四边形BECF是菱形,
∵BD=3,DF=,
∴BF==2,
∴四边形BECF的周长是4×2=8.
故