如图所示,已知P为正方形ABCD外的一点.PA=1,PB=2.将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,求∠BP′C的度数.
网友回答
解:连接PP′,
∵△ABP绕点B顺时针旋转90°,使点P旋转至点P′,
∴P′B=PB=2,∠PBP′=90°,
∴PP′==2,∠BPP′=45°,
∵PA=1,AP′=3,
∴PA2+PP′2=AP′2,
∴∠APP′=90°,
∴∠APB=∠APP′+∠BPP′=135°,
∴∠BP′C=∠APB=135°.
解析分析:首先连接PP′,由旋转的性质,可求得PP′的长,∠BPP′=45°,然后由勾股定理的逆定理,证得∠APP′=90°,继而求得