如图,把△ABC的纸片沿DE折叠,当点A落在四边形BCED内部时,则∠A与∠1、∠2之间有一种数量关系始终保持不变,请试着找出这个规律为________.
网友回答
2∠A=∠1+∠2
解析分析:本题考查的是三角形内角和定理.需要注意的是弄清图中角与角之间的关系列出方程以及三角形内角和为180°来求解.
解答:∵在△ADE中:∠A+∠ADE+∠AED=180°,
∴∠A=180°-∠ADE-∠AED,
由折叠的性质得:∠1+2∠ADE=180°,∠2+2∠AED=180°,
∴∠1+2∠ADE+∠2+2∠AED=360°,
∴∠1+∠2=360°-2∠ADE-2∠AED=2(180°-∠ADE-∠AED)=2∠A,
∴2∠A=∠1+∠2.
即当△ABC的纸片沿DE折叠,当点A落在四边形BCED内部时2∠A=∠1+∠2这种数量关系始终保持不变.
点评:本题需要认真读图,找出图中的各角之间的关系列出等式即可求解.注意弄清折叠后∠1+2∠ADE=180°,∠2+2∠AED=180°的关系,解答此题时要注意∠A落在四边形BCED内部时这种关系才能存在.