已知:如图,E为正方形ABCD的边BC延长线上的点,F是CD边上一点,且CE=CF,连接DE,BF.求证:DE=BF.

发布时间:2020-08-09 05:55:42

已知:如图,E为正方形ABCD的边BC延长线上的点,F是CD边上一点,且CE=CF,连接DE,BF.求证:DE=BF.

网友回答

证明:∵四边形ABCD是正方形,
∴BC=DC,∠BCD=90°
∵E为BC延长线上的点,
∴∠DCE=90°,
∴∠BCD=∠DCE.
在△BCF和△DCE中,

∴△BCF≌△DCE(SAS),
∴DE=BF.
解析分析:根据正方形的四条边都相等,四个角都是直角,BC=CD、∠BCF=∠DCE=90°,又CE=CF,根据边角边定理△BCF和△DCE全等,再根据全等三角形对应边相等即可证明.

点评:本题主要考查正方形的四条边都相等和四个角都是直角的性质以及三角形全等的判定和全等三角形对应边相等的性质.
以上问题属网友观点,不代表本站立场,仅供参考!