如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C

发布时间:2020-08-05 18:43:52

如图,一段抛物线:y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;
将C1绕点A1旋转180°得C2,交x轴于点A2;
将C2绕点A2旋转180°得C3,交x轴于点A3;

如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=________.

网友回答

2

解析分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.

解答:∵一段抛物线:y=-x(x-3)(0≤x≤3),
∴图象与x轴交点坐标为:(0,0),(3,0),
∵将C1绕点A1旋转180°得C2,交x轴于点A2;
将C2绕点A2旋转180°得C3,交x轴于点A3;

如此进行下去,直至得C13.
∴C13的与x轴的交点横坐标为(36,0),(39,0),且图象在x轴上方,
∴C13的解析式为:y13=-(x-36)(x-39),
当x=37时,y=-(37-36)×(37-39)=2.
以上问题属网友观点,不代表本站立场,仅供参考!