如图,在四边形ABCD中,E、F分别是两组对边延长线的交点,EG、FG分别平分∠AEB,∠AFD,已知∠ABC=88°,∠ADC=72°,则∠EGF的度数为_____

发布时间:2020-08-10 18:04:31

如图,在四边形ABCD中,E、F分别是两组对边延长线的交点,EG、FG分别平分∠AEB,∠AFD,已知∠ABC=88°,∠ADC=72°,则∠EGF的度数为________度.

网友回答

100
解析分析:根据题意,由三角形内角和等于180°性质得出∠EGF=180°-(∠GFE+∠GEF),后根据三角形角平分线及外角性质依次代入得出结论.

解答:解:连接EF,
根据三角形内角和等于180°及三角形角平分线的性质,
∴∠EGF=180°-(∠GFE+∠GEF)
=180°-(∠CFE-∠CFG+∠CEF-∠CEG)
=180°-(∠CFE+∠CEF)+(∠CFG+∠CEG)
=180°-(180°-∠C)+( ∠CFD+∠CEB)
=∠C+(∠CFD+∠CEB)
=∠C+(180°-∠C-∠CDA+180°-∠C-∠CBA)
=∠C+(360°-2∠C-88°-62°)
=100°.
以上问题属网友观点,不代表本站立场,仅供参考!