已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.

发布时间:2020-08-12 01:11:51

已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.

网友回答

证明:过点A作AM∥BC,交FD延长线于点M,连接EM.
∵AM∥BC,
∴∠MAE=∠ACB=90°,∠MAD=∠B.
∵AD=BD,∠ADM=∠BDF,
∴△ADM≌△BDF.
∴AM=BF,MD=DF.
又∵DE⊥DF,∴EF=EM.
∴AE2+BF2=AE2+AM2=EM2=EF2.
解析分析:过点A作AM∥BC,交FD延长线于点M,连接EM,通过证明AM=BF,EF=EM即可得出
以上问题属网友观点,不代表本站立场,仅供参考!