如图所示,四边形ABCD为正方形,△BEF为等腰直角三角形(∠BFE=90°,点B、E、F按逆时针顺序),P为DE的中点,连接PC、PF.(1)如图(1),E点在边B

发布时间:2020-08-09 09:29:10

如图所示,四边形ABCD为正方形,△BEF为等腰直角三角形(∠BFE=90°,点B、E、F按逆时针顺序),P为DE的中点,连接PC、PF.
(1)如图(1),E点在边BC上,则线段PC、PF的数量关系为______,位置关系为______(不需要证明).
(2)如图(2),将△BEF绕B点顺时针旋转α°(0<α<45),则线段PC、PF有何数量关系和位置关系?请写出你的结论并证明.
(3)如图(3),E点旋转到图中的位置,其它条件不变,完成图(3),则线段PC、PF有何数量关系和位置关系?直接写出你的结论,不需要证明.

网友回答

解:(1)∵∠BFE=90°,点P为DE的中点
∴PF=PD=PE,
同理可得PC=PD=PE,
∴PC=PF,
又∵∠FPE=2∠FDP,∠CPE=2∠PDC,
∴∠FPC=2∠FDC=90°,
所以PC=PF,PC⊥PF.
以上问题属网友观点,不代表本站立场,仅供参考!