已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0).(1)证明4c=3b2;(2)若该函数图象的对称轴为直线x=1,试求

发布时间:2020-08-10 00:14:45

已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0).
(1)证明4c=3b2;
(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.

网友回答

(1)证明:依题意,m,-3m是一元二次方程x2+bx-c=0的两根,
根据一元二次方程根与系数的关系,得x1+x2=m+(-3m)=-b,x1?x2=m(-3m)=-c,
∴b=2m,c=3m2,
∴4c=3b2=12m2;

(2)解:依题意,,即b=-2,
由(1)得,
∴y=x2-2x-3=(x-1)2-4,
∴二次函数的最小值为-4.
解析分析:(1)由根与系数关系得出等式,消去m,得出b、c的关系式;
(2)根据对称轴公式可求系数b,代入(1)的结论可求c,可确定二次函数解析式,再求函数的最小值.

点评:本题考查了抛物线与x轴的交点横坐标与一元二次方程根与系数关系的联系,待定系数法求二次函数解析式的方法.
以上问题属网友观点,不代表本站立场,仅供参考!