连续数求和1+2+3+4+5……+99+1003+5+7+9+……+99+1012+4+6+8+10+……+96+98+100 ……有什么规律可以使简便计算,或是公式,进行解答!还有1 1 1 1 1 1 1 ——+——+——+——+……+——+——+—— 2 468 96 98 100= 数学
网友回答
【答案】 1+2+3+4+5……+99+100
=(1+100)*100/2
=5050
3+5+7+9+……+99+101
=(3+99)*(98/2)/2+101
=2600
2+4+6+8+10+……+96+98+100
=(2+100)*(100/2)/2
=2550
等于:第一个数加最后一个数的和,乘以总个数的积,再除以2 追问: 总个数的积怎么求 如:3+5+7+9+……+99+101 追答: 这个都是奇数,但是没有1,却有101 100以内的奇数有50个 所以这列数实际奇数个数还有50个 所以还可以写成 3+5+7+9+……+99+101 =(3+101)*50/2 =2600 追问: 是什么公式呢 追答: 等差数列公式:最后一个数为an=a1+(n-1)d(d为公差),Sn=(a1+an)*n/2=a1n+n(n-1)d/2 比如:3+5+7+9+……+99+101 a1=3,d=2,n=100/2=50 代入即可