如图,D为反比例函数的图象上一点,过D作DE⊥x轴于点E,DC⊥y轴于点C,一次函数y=-x+2的图象经过C点,与x轴相交于A点,四边形DCAE的面积为4,求k的值.

发布时间:2020-08-12 00:30:15

如图,D为反比例函数的图象上一点,过D作DE⊥x轴于点E,DC⊥y轴于点C,一次函数y=-x+2的图象经过C点,与x轴相交于A点,四边形DCAE的面积为4,求k的值.

网友回答

解:由于一次函数y=-x+2的图象经过C点,与x轴相交于A点,
则可求得A(2,0)、C(0,2),即OA=OC=2.
S△AOC=×2×2=2,|k|=S矩形DCOE=4-2=2.
又函数图象位于第二象限,k<0,则k=-2.
解析分析:此题先由一次函数y=-x+2求得A、C两点坐标,得出△AOC的面积,则矩形DCOE的面积即可求出,再由反比例函数系数k的几何意义及函数图象位于第二象限求得k的值.

点评:本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.
以上问题属网友观点,不代表本站立场,仅供参考!