某校奖励学生,初一获奖学生中,有一人获奖品3件,其余每人获奖品7件;初二获奖学生中,有一人获奖品4件,其余每人获奖品9件.如果两个年级获奖人数不等,但奖品数目相等,且每个年级奖品数大于50而不超过100,那么两个年级获奖学生共有________人.
网友回答
25
解析分析:分别设两个年级的人数为未知数,可得到每个年级奖品的总数目,让其相等可得两个未知数的关系.关系式为:50<每个年级的奖品数≤100,把相关数值代入求得适合的整数解,相加即可.
解答:设初一获奖人数为n+1人,初二获奖人数为m+1人(n≠m).依题意有
3+7n=4+9m,即7n=9m+1①
由于50<3+7n≤100,50<4+9m≤100.得
<n≤,<m≤,
∴n=7,8,9,10,11,12,13.m=6,7,8,9,10.
但满足①式的解为唯一解:n=13,m=10.
∴n+1=14,m+1=11.
∴获奖人数共有14+11=25(人).
故