已知三角形三边长分别为2,x,13,若此三角形的周长为奇数,则满足条件的三角形个数为A.2个B.3个C.13个D.无数个

发布时间:2020-08-10 16:54:45

已知三角形三边长分别为2,x,13,若此三角形的周长为奇数,则满足条件的三角形个数为A.2个B.3个C.13个D.无数个

网友回答

A
解析分析:先根据三角形的三边关系求出x的取值范围,再根据三角形的周长为奇数可知x为正整数,写出符合条件的所有x的值即可.

解答:∵三角形三边长分别为2,x,13,
∴13-2<x<13+2,即11<x<15,
∴此三角形的周长为奇数,
∴x为正整数,
∴x的值可以为:12,13,14,
当x=12时,三角形的周长=2+12+13=27;
当x=13时,三角形的周长=2+13+13=28(舍去);
当x=14时,三角形的周长=2+14+13=28.
故选A.

点评:本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.
以上问题属网友观点,不代表本站立场,仅供参考!