为什么x^2-sin^2x等价无穷小是1/3x^4,求过程

发布时间:2019-08-28 21:19:28

为什么x^2-sin^2x等价无穷小是1/3x^4,求过程

推荐回答

x→0时,由泰勒公式x+sinx=x+(x+o(x))=2x+o(x),故x+sinx~2xx-sinx=x-(x+1/6x^3+o(x^3))=1/6x^3+o(x^3),故x+sinx~1/6x^3所以x^2-sin^2x=(x+sinx)(x-sinx)~2x*1/6x^3=1/3x^4
以上问题属网友观点,不代表本站立场,仅供参考!