某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选

发布时间:2020-07-28 11:54:35

某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门.学校规定,每位同学选修三门,则每位同学不同的选修方案种数是A.120B.98C.63D.56

网友回答

B解析分析:A,B,C三门由于上课时间相同至多选一门,A,B,C三门课都不选,有C73=35种方案;A,B,C中选一门,剩余7门课中选两门,有C31C72=63种方法,根据分类计数原理得到结果.解答:∵A,B,C三门由于上课时间相同,至多选一门第一类A,B,C三门课都不选,有C73=35种方案;第二类A,B,C中选一门,剩余7门课中选两门,有C31C72=63种方案.∴根据分类计数原理知共有35+63=98种方案.故选B点评:本题考查分类计数问题,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,把几个步骤中数字相加得到结果.
以上问题属网友观点,不代表本站立场,仅供参考!