如图,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是________.
网友回答
10
解析分析:由于AB=AC,AE平分∠BAC交BC于点E,根据等腰三角形三线合一定理可知BE=CE=4,而D是AB中点,那么可知DE是△BAC的中位线,于是DE=AC=3,进而易求△BDE的周长.
解答:如右图所示,
∵AB=AC,AE平分∠BAC交BC于点E,
∴BE=CE=4,
又∵D为AB的中点,
∴DE是△BAC的中位线,
∴DE=AC=3,
∴△BDE的周长=3+3+4=10.
故