【二次函数知识点总结】初三二次函数知识梳理.老师叫我们整理的。

发布时间:2021-03-24 07:03:22

初三二次函数知识梳理.老师叫我们整理的。 数学

网友回答

【答案】 一般式Y=ax2+bx+c(a不等于0)
  a的作用,决定二次函数开口方向和开口大小
  b的作用,和a一起决定二次函数的对称轴
  c的作用,决定截距
  对称轴x=-b/2a
  顶点坐标[-b/2a,(4ac-b2)/4a]
  顶点式:y=a(x-k)2+h
  两根式:y=a(x-x1)(x-x2)
  知道二次函数的意义.
  自变量的取值范围及对所含系数的要求有哪些异同,在比较中掌握二次函数的定义.
  图象的有关技巧(y=ax2的关键点是顶点及关于y轴的对称点).
  本节的重点是二次函数的概念,正确画出y=ax2的图象,初步掌握二次函数的性质.
  函数的增减性是教学的难点.
  函数y=ax2的图象是一条关于y轴对称的曲线,这条曲线叫抛物线.
  1. 会用描点法画出二次函数的图象.
  2. 能利用图象或通过配方法确定抛物线的开口方向及对称轴、顶点的位置.
  3. 会由已知图象上三个点的坐标求出二次函数的解析式.
  对二次函数画图象,首先应了解二次函数的图象是抛物线,其关键点是它的顶点 抛物线与x轴有交点),然后依对称性,再参照y=ax2的图象,就可迅速画出原二次函数的图象.
  在学习二次函数的性质时,应结合函数的图象,对比各种不同形式及相同形式但所含常数不同时的各种情况,归纳总结出一定的规律,从而更好地理解函数的性质.
  在函数性质的教学中,应充分调动学生的积极性,引导他们从增减性、对称性、最值、截距几个方面去发现性质,然后再逐渐条理化.
  学会函数知识的应用,从而加强技能的训练和能力的培养.
  用描点法画二次函数的图象,用一般式来研究二次函数的性质,求二次函数的解析式,是本节的重点.
  怎样移动便得到另一个图象;由二次函数的图象得出二次函数的性质,这是一个数形结合的问题,以上三个问题是本节中的难点.
  1. 函数y=ax2的图象是一条抛物线,它的对称轴是y轴,顶点是原点.当a>0时,抛物线y=ax2在x轴的上方,在y轴的左右两侧同时向上无限延伸;当a
以上问题属网友观点,不代表本站立场,仅供参考!