已知x1、x2是一元二次方程4kx2-4kx+k+1=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使(2x1-x2)(x1-2x2)=-成立?若存在

发布时间:2020-08-12 03:39:20

已知 x1、x2是一元二次方程4kx2-4kx+k+1=0的两个实数根.
(1)求k的取值范围.
(2)是否存在实数k,使(2x1-x2)(x1-2x2)=-成立?若存在求出k的值;若不存在,请说明理由.

网友回答

解:(1)∵x1、x2是一元二次方程4kx2-4kx+k+1=0的两个实数根,
∴△=b2-4ac=16k2-4×4k(k+1)=-16k≥0,且4k≠0,
解得k<0;
(2)∵x1、x2是一元二次方程4kx2-4kx+k+1=0的两个实数根,
∴x1+x2=1,x1x2=,
∴(2x1-x2)(x1-2x2)=2x12-4x1x2-x1x2+2x22=2(x1+x2)2-9x1x2=2×12-9×=2-,
若2-=-成立,
解上述方程得,k=,
∵(1)中k<0,(2)中k=,
∴矛盾,
∴不存在这样k的值.
解析分析:(1)根据已知可知,方程有两个实数根,那么△≥0,解不等式即可;
(2)由于方程有两个实数根,那么根据根与系数的关系可得x1+x2=1,x1x2=,然后把x1+x2、x1x2代入(2x1-x2)(x1-2x2)=-中,进而可求k的值.

点评:本题考查了根的判别式、根与系数的关系,解题的关键是注意数值的正负不等号的变化关系、以及完全平方公式的使用.
以上问题属网友观点,不代表本站立场,仅供参考!