《九章算术》中将底面的长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为蟞臑.在如图所示的阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD=BC,则当点E在下列四个位置:PA中点、PB中点、PC中点、PD中点时分别形成的四面体E-BCD中,蟞臑有( )
A. 1个B. 2个C. 3个D. 4个 数学
网友回答
【答案】 证明:(1)当点E在PC中点时:因为PD⊥底面ABCD,所以PD⊥BC,因为ABCD为正方形,所以BC⊥CD,因为PD∩CD=D,所以BC⊥平面PCD,因为DE?平面PCD,所以BC⊥DE,因为PD=CD,点E是PC的中点,所以DE⊥PC,因为PC∩BC=C,所以DE⊥平面PBC,由BC⊥平面PCD,DE⊥平面PBC,可知四面体EBCD的四个面都是直角三角形,即四面体EBCD是一个鳖臑,其四个面的直角分别是∠BCD,∠BCE,∠DEC,∠DEB;(2)当点E在PA中点时:如图,以D为原点,分别以DA,DC,DP为x,y,z轴的正方向建立空间直角坐标系,设PD=DC=BC=1,则:C(0,1,0),B(1,1,0),D(0,0,0),E(12,0,12),可求:BC=1,BE=