如图,在△ABC中,已知点D、E、F分别是BC、AD、BE上的中点,且△ABC的面积为8cm2,则△BCF的面积为A.0.5cm2B.1cm2C.2cm2D.4cm2
网友回答
C
解析分析:连接CE,由点D为BC的中点,根据等高的两三角形面积的比等于底边的比得到S△ADC=S△ABC,S△EDC=S△EBC,同理由点E为AD的中点得到S△EDC=S△ADC,
则S△EBC=2S△EDC=S△ABC,然后利用F点为BE的中点得到S△BCF=S△EBC=×S△ABC,再把△ABC的面积为8cm2代入计算即可.
解答:连接CE,如图,
∵点D为BC的中点,
∴S△ADC=S△ABC,S△EDC=S△EBC,
∵点E为AD的中点,
∴S△EDC=S△ADC,
∴S△EDC=S△ABC,
∴S△EBC=2S△EDC=S△ABC,
∵F点为BE的中点,
∴S△BCF=S△EBC=×S△ABC=××8=2(cm2).
故选C.
点评:本题考查了三角形面积:三角形面积等于底边与底边上的高德积的一半;等底等高的两三角形面积相等,等高的两三角形面积的比等于底边的比.