如图所示,△ABC中,∠C=90°,∠B=60°,BD是△ABC的角平分线,BC=,以A为圆心,2为半径画⊙A,点D在A.⊙A内B.⊙A上C.⊙A外D.不能判定
网友回答
B
解析分析:首先利用角平分线的性质得出∠DBC=30°,进而得出CD,AC的长,即可求出AD=2得出点D在⊙A上.
解答:∵∠C=90°,∠B=60°,BD是△ABC的角平分线,
∴∠DBC=30°,∠A=30°,
∵BC=,
∴AB=2,
∴AC=3,tan30°===.
则CD=1,
∴AD=2,
∵以A为圆心,2为半径画⊙A,
∴点D在⊙A上,
故选:B.
点评:此题主要考查了点与圆的位置关系,根据已知得出DC与AC的长是解题关键.