如图,⊙O的半径OC与直径AB垂直,点P在OB上运动(点O、B除外),CP的延长线交⊙O于点D,在OB的延长线上取点E,使ED=EP.(1)求证:ED是⊙O的切线;(

发布时间:2020-08-05 04:42:26

如图,⊙O的半径OC与直径AB垂直,点P在OB上运动(点O、B除外),CP的延长线交⊙O于点D,在OB的延长线上取点E,使ED=EP.
(1)求证:ED是⊙O的切线;
(2)当OC=2,ED=2时,求∠E的正切值tanE和图中阴影部分的面积S(结果保留无理数).

网友回答

(1)证明:连接OD,
∵OD是圆的半径,
∴OD=OC.
∴∠CDO=∠DCO.
∵OC⊥AB,
∴∠COP=90°.
∵在Rt△OPC中,∠CPO+∠PCO=90°,
∵ED=EP,
∴∠EDP=∠EPD=∠CPO.
∴∠EDO=∠EDP+∠CDO=∠CPO+∠DCO=90°.
∴ED⊥OD,即ED是圆的切线.

(2)解:∵OD=OC=2,ED=2,
∴tan∠E==.
∴∠E=30°,∠DOB=60°.
∴S阴影=S△ODE-S扇形=×2×2-=2-π(平方单位).
解析分析:(1)只要证明ED⊥OD,即可得到ED是圆的切线;
(2)根据阴影部分的面积S阴影=S△ODE-S扇形求解.

点评:本题利用了等边对等角,直角三角形的性质,等角的余角相等,正切的概念,直角三角形的面积公式,扇形的面积公式求解.
以上问题属网友观点,不代表本站立场,仅供参考!