第7题...

发布时间:2021-03-16 04:31:41

第7题... 

网友回答

∫[0,π/4]ln(1+tanx)dx
换元π/4-t=x
=-∫[π/4,0]ln[1+(1-tant)/(tant+1)]dt=
=∫[0,π/4]ln[2/(tant+1)]dt=∫[0,π/4]ln2-∫[0,π/4]ln(tant+1)dt=πln2/4-∫[0,π/4]ln(tanx+1)dx
2∫[0,π/4]ln(1+tanx)dx=πln2/4
所以∫[0,π/4]ln(1+tanx)dx=πln2/8
以上问题属网友观点,不代表本站立场,仅供参考!