如图,将△ABC沿它的中位线MN折叠后,点A落在点A′处,若∠A=28°,∠B=120°,则∠A′NC=________度.
网友回答
116
解析分析:先利用内角和定理求∠C,根据三角形的中位线定理可知MN∥BC,由平行线的性质可求∠A′NM、∠CNM,再利用角的和差关系求∠A′NC.
解答:已知∠A=28°,∠B=120°,由三角形的内角和定理可知,
∠C=180°-∠A-∠B=32°,
∵MN是三角形的中位线,
∴MN∥BC,
∠A′NM=∠C=32°,∠CNM=180°-∠C=148°,
∴∠A′NC=∠CNM-∠A′NM=148°-32°=116°.
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.