已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为A.B.2C.D.

发布时间:2020-08-04 16:04:26

已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为A.B.2C.D.

网友回答

B
解析分析:设AC和BD的交点是O.过点O作GH⊥CD于G,交AB于H.根据等角的余角相等以及圆周角定理可以证明点H是AB的中点.再过点O作MN⊥AB于M,交CD于点N.同样可以证明N是CD的中点.设该圆的圆心是O′,连接O′N、O′H.根据垂径定理的推论,得O′N⊥CD,O′H⊥AB.则O′N∥GH,O′H∥MN,则四边形O′NOH是平行四边形,则O′H=ON=CD=2.

解答:解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选B.

点评:此题综合运用了等角的余角相等以及等弧所对的圆周角相等,发现垂直于一边的直线,和另一边的交点正好是它的中点.再根据垂径定理的推论,得到垂直,发现平行四边形.根据平行四边形的对边相等,即可求解.
以上问题属网友观点,不代表本站立场,仅供参考!