利用三重积分计算下列由曲面所围成的立体的体积①z=6-x^2-y^2及z=√(x^2+y^2);②x

发布时间:2021-03-07 22:23:04

利用三重积分计算下列由曲面所围成的立体的体积①z=6-x^2-y^2及z=√(x^2+y^2);②x^2+y^2+z^2=2az(a>0)及x^2+y^2=z^2(含z轴部分);③z=√(x^2+y^2)及z=x^2+y^2;x^2+y^2+z^2=5及x^2+y^2=4z.④

网友回答

利用三重积分计算下列由曲面所围成的立体的体积①z=6-x^2-y^2及z=√(x^2+y^2);②x^2+y^2+z^2=2az(a>0)及x^2+y^2=z^2(含z轴部分);③z=√(x^2+y^2)及z=x^2+y^2;x^2+y^2+z^2=5及x^2+y^2=4z.④(图1)
以上问题属网友观点,不代表本站立场,仅供参考!