下列命题中:①集合A={?x|0≤x<3且x∈N?}的真子集的个数是8;②关于x的一元二次方程x2+mx+2m+1=0一个根大于1,一个根小于1,则实数m的取值范围;

发布时间:2020-08-11 02:09:59

下列命题中:
①集合A={?x|0≤x<3且x∈N?}的真子集的个数是8;
②关于x的一元二次方程x2+mx+2m+1=0一个根大于1,一个根小于1,则实数m的取值范围;
③函数f(x)=x2+(3a+1)x+2a在?(-∞,4)上为减函数,则实数a的取值范围是a≤3;
④已知函数y=4x-4?2x+1(-1≤x≤2),则函数的值域为[,1];
⑤定义在(-1,0)的函数f(x)=log(2a)(x+1)满足f(x)>0的a的取值范围是(0,);
⑥将三个数:x=20.2,y=,z=,
按从大到小排列正确的是z>x>y,其中正确的有 ________.

网友回答

②⑤
解析分析:①不正确,因为含三个元素的集合其真子集共有23-1=7 个.②正确,因为由题意知,1对应的函数值小于0,解得m<-,
③不正确,因为由4≤-解得 a≤-3.?
④不正确,因为≤2x≤4,函数y=(2x-2)2-3,当 2x=2时,函数有最小值-3,当 2x=4时,函数有最大值 1.
⑤正确,因为log(2a)(x+1)>0,0<x+1<1,故 0<2a<1.
⑥不正确,因为 1<20.2<2,0<<1,<0,故x>y>z.

解答:①不正确,因为集合A中含有0、1、2三个元素,其所有子集共8个,其中真子集有7个.
对于②,∵关于x的一元二次方程x2+mx+2m+1=0一个根大于1,一个根小于1,令f(x)=x2+mx+2m+1=0,
则f(1)=2+3m<0,∴m<-,故②正确.
对于③,f(x)=x2+(3a+1)x+2a在?(-∞,4)上为减函数时,4≤-,∴a≤-3,故③不正确.
对于④,函数y=4x-4?2x+1(-1≤x≤2)=(2x-2)2-3,∵-1≤x≤2,≤2x≤4,
故当 2x=2时,函数有最小值-3,当 2x=4时,函数有最大值 1,故函数的值域[-3,1],故④不正确.
对于⑤,在(-1,0)上的函数f(x)=log(2a)(x+1)满足f(x)>0,∴0<x+1<1,
∴0<2a<1,∴0<a<,故⑤正确.
对于⑥,∵1<20.2<2,0<<1,<0,故 x>y>z,故⑥不正确.
综上,只有②⑤正确,故
以上问题属网友观点,不代表本站立场,仅供参考!