如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD=AE.(1)求证:GE=2BE;(2)若EG=4,求梯形ABGD的面积.

发布时间:2020-08-11 10:57:53

如图,矩形ABCD,延长BC到G,连接GD.作∠BGD的平分线交AB于E.若EG=DG,AD=AE.
(1)求证:GE=2BE;
(2)若EG=4,求梯形ABGD的面积.

网友回答

(1)证明:如图,连接DE,∵AD=AE,
∴△ADE是等腰直角三角形,
∴∠AED=45°,
设∠BGE=x,
∵GE是∠BGD的平分线,
∴∠BGE=∠DGE=x,
在Rt△BGE中,∠BEG=90°-x,
∵EG=DG,
∴∠DEG=(180°-x),
又∵∠AED+∠DEG+∠BEG=180°,
∴45°+(180°-x)+90°-x=180°,
解得x=30°,
即∠BGE=30°,
∴GE=2BE;

(2)解:∵GE是∠BGD的平分线,
∴∠CGD=∠BGE+∠DGE=30°+30°=60°,
∴CD=DGsin60°=4×=2,
在Rt△BGE中,BE=EG=×4=2,
BG=EGcos30°=4×=2,
∴AD=AE=AB-BE=2-2,
梯形ABGD的面积=(AD+BG)CD=(2-2+2)×2=(4-2)=12-2.
解析分析:(1)连接DE,根据矩形的性质可得△ADE是等腰直角三角形,所以,∠AED=45°,设∠BGE=x,根据角平分线的定义可得∠DGE=x,根据直角三角形两锐角互余求出∠BEG,根据等腰三角形两底角相等求出∠DEG,然后根据平角等于180°列式求解即可得到x=30°,再根据30°所对的直角边等于斜边的一半证明;
(2)先求出∠CGD=60°,然后解直角三角形求出CD的长度,根据矩形的对边相等求出AB的长度,在Rt△BGE中,求出BE、BG的长度,然后求出AE,即可得到AD,然后利用梯形的面积公式列式计算即可得解.

点评:本题考查了矩形的性质,解直角三角形,直角三角形30°角所对的直角边等于斜边的一半的性质,题目设计巧妙,难度较大,利用∠BGE的度数恰好30°求解是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!