设函数f(x)=x|x|+bx+c(x∈R)给出下列4个命题①当b=0时,f(x

发布时间:2020-07-09 03:35:49

设函数f(x)=x|x|+bx+c(x∈R)给出下列4个命题
①当b=0时,f(x)=0只有一个实数根;
②当c=0时,y=f(x)是偶函数;
③函数y=f(x)的图象关于点(0,c)对称;
④当b≠0,c≠0时,方程f(x)=0有两个不等实数根.
上述命题中,所有正确命题的个数是













A.0












B.1











C.2











D.3

网友回答

C解析分析:对于①当b=0时,f(x)=x|x|+c=0,因y=x|x|与y=-c只有一个交点,故可判断;②当c=0时,f(x)=x|x|+bx,可判断函数为奇函数;③y=f(x)的图象可由奇函数f(x)=x|x|+bx向上或向下移|c|,y=f(x)的图象与y轴交点为(0,c),故函数y=f(x)的图象关于点(0,c)对称,故可判断;④当b≠0,c≠0时,f(x)=x|x|+x+1只有一个实数根.解答:①当b=0时,f(x)=x|x|+c=0,因y=x|x|与y=-c只有一个交点,故①正确;②当c=0时,f(x)=x|x|+bx,f(-x)=-f(x),故y=f(x)是奇函数;③y=f(x)的图象可由奇函数f(x)=x|x|+bx向上或向下移|c|,y=f(x)的图象与y轴交点为(0,c),故函数y=f(x)的图象关于点(0,c)对称,故③正确;④当b≠0,c≠0时,f(x)=x|x|+x+1只有一个实数根.故选C.点评:本题的考点是命题的真假判断与应用.主要考查函数性质的判断,关键是正确理解函数.
以上问题属网友观点,不代表本站立场,仅供参考!