已知:如图,在四边形ABCD中,BD平分∠ABC,与AC交于点E,AD2=BD?ED.(1)求证:△ADE∽△BDA(2)如果BA=10,BC=12,BD=15,求B

发布时间:2020-08-08 02:03:00

已知:如图,在四边形ABCD中,BD平分∠ABC,与AC交于点E,AD2=BD?ED.
(1)求证:△ADE∽△BDA
(2)如果BA=10,BC=12,BD=15,求BE的长.

网友回答

解:(1)证明:∵AD2=BD?ED,
∴,
∵∠ADE=∠BDA,
∴△AED∽△BDA.

(2)∵△AED∽△BDA,
∴∠AED=∠BAD.
∵∠BEC=∠AED,
∴∠BEC=∠BAD.
∵BD平分∠ABC,即∠EBC=∠ABD,
∴△EBC∽△ABD.
∴.
∵BA=10,BC=12,BD=15,
∴,
∴BE=8.
解析分析:(1)根据AD2=BD?ED得出,再根据∠ADE=∠BDA,即可证出△AED∽△BDA.
(2)根据△AED∽△BDA,得出∠AED=∠BAD,再通过证明△EBC∽△ABD,得出,再把BA、BC、BD的值代入即可求出BE的长.

点评:此题考查了相似三角形的判定与性质;关键是综合利用三角形的判定与性质列出比例式求出线段的长.
以上问题属网友观点,不代表本站立场,仅供参考!