已知,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上

发布时间:2020-08-09 02:42:25

已知,在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时,求证:①CF=BD;②CF⊥BD.
(2)如图2,当点D在线段BC的延长线上时,其它条件不变,线段CF与BD的上述关系是否还成立?请直接写出结论即可(不必证明).
(3)如图3,当点D在线段BC的反向延长线上,且点A、F在直线BC的两侧,其它条件不变,线段CF与BD的上述关系是否还成立?若成立,请证明你的结论;若不成立,请说明理由.

网友回答

(1)证明:∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD+∠CAD=∠BAC=90°,
∠CAF+∠CAD=∠DAF=90°,
∴∠BAD=∠CAF,
在△ABD和△ACF中,

∴△ABD≌△ACF(SAS),
∴①CF=BD,
∠ACF=∠ABD,
∴∠BCF=∠ACB+∠ACF=45°+45°=90°,
∴②CF⊥BD;

(2)解:当点D在线段BC的延长线上时,线段CF与BD的上述关系仍然成立;

(3)解:当点D在线段BC的反向延长线上,且点A、F在直线BC的两侧,线段CF与BD的上述关系仍然成立.
理由如下:同理可证△ABD≌△ACF,
∴CF=BD,∠ACF=∠ABD=180°-45°=135°,
∵∠ACB=45°,
∴∠BCF=∠ACF-∠ACB=135°-45°=90°,
∴CF⊥BD.
解析分析:(1)根据等腰直角三角形的性质求出∠ABC=∠ACB=45°,正方形的性质可得AD=AF,∠DAF=90°,然后利用同角的余角相等求出∠BAD=∠CAF,再利用“边角边”证明△ABD和△ACF全等,根据全等三角形对应边相等可得CF=BD,全等三角形对应角相等可得∠ACF=∠ABD,然后求出∠BCF=90°,再根据垂直的定义证明即可;
(2)结论仍然成立;
(3)同(1)可证△ABD和△ACF全等,根据全等三角形对应边相等可得CF=BD,全等三角形对应角相等可得∠ACF=∠ABD=135°,然后求出∠BCF=90°,再根据垂直的定义证明即可.

点评:本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,根据点D的位置的变化,△ABD和△ACF始终全等是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!