已知函数f(x)=ax2+bx+3a+b为偶函数,其定义域是[a-1,2a],求f(x)的值域.
网友回答
解:∵f(x)=ax2+bx+3a+b是[a-1,2a]上的偶函数,
∴,解得,
∴f(x)=x2+1,定义域是[a-1,2a]=[,],
∴f(x)在[,0)上递减,在(0,]上递增,
则当x=0时,f(x)取最小值为1,
当x=或时,f(x)取最大值为,
∴f(x)=x2+1上的值域为[1,].
解析分析:根据二次函数是偶函数的性质列出方程组,求出a和b,代入求出函数解析式和定义域对应的区间,根据函数在定义域上的单调性,求出最大值和最小值,即求出值域.
点评:本题考查了二次函数是偶函数的性质,及二次函数的单调性应用,关键是掌握二次函数是偶函数的充要条件.