在平行四边形ABCD中,E,F分别是BC,CD的中点,DE交AF于H,记向量AB,向量BC分别为向量

发布时间:2021-03-08 23:18:41

在平行四边形ABCD中,E,F分别是BC,CD的中点,DE交AF于H,记向量AB,向量BC分别为向量a,向量b,则向量AH=

网友回答

取AB的中点M则
MF=BC=b,
AM=1/2AB=1/2a,
故AF=AM+MF=1/2a+b
但由F,E是DC,BC的中点,故
设AH=2x则;
AF=2x+1/2x=5/2x
故AH=2/5a+4/5b
======以下答案可供参考======
供参考答案1:
解 设AH=ma+nb(其中m,n是待定系数),则DE=DC+CE=a-1/2b,DH=DA+AH=ma+(n-1)b.由DH与DE共线得,
n-1=-1/2m (*)
AF=AD+DF=1/2a+b,由AF与AH共线得,
1/2n=m (**)
由(*)和(**)解得m=2/5,n=4/5
故AH=2/5a+/5b
评注:解这类题目关键是利用平面向量的加减法则和平面向量的基本定理。
多悬赏点积分吧,我很穷啊
以上问题属网友观点,不代表本站立场,仅供参考!