如图,在矩形ABCD中,对角线AC、BD相交于O,DE⊥AC于E,∠EDC:∠EDA=1:2,且AC=10,则DE的长度是________.

发布时间:2020-08-12 05:09:01

如图,在矩形ABCD中,对角线AC、BD相交于O,DE⊥AC于E,∠EDC:∠EDA=1:2,且AC=10,则DE的长度是________.

网友回答


解析分析:根据∠EDC:∠EDA=1:2,可得∠EDC=30°,∠EDA=60°,进而得出△OCD是等边三角形,再由AC=10,求得DE.

解答:∵四边形ABCD是矩形,
∴∠ADC=90°,AC=BD=10,OA=OC=AC=5,OB=OD=BD=5,
∴OC=OD,
∴∠ODC=∠OCD,
∵∠EDC:∠EDA=1:2,∠EDC+∠EDA=90°,
∴∠EDC=30°,∠EDA=60°,
∵DE⊥AC,
∴∠DEC=90°,
∴∠DCE=90°-∠EDC=60°,
∴∠ODC=∠OCD=60°,
∴∠ODC+∠OCD+∠DOC=180°,
∴∠COD=60°,
∴△OCD是等边三角形,
DE=sin60°?OD=×5=,
以上问题属网友观点,不代表本站立场,仅供参考!