如图,O,H分别是锐角△ABC的外心和垂心,D是BC边上的中点.由H向∠A及其外角平分线作垂线,垂足分别是E,F.求证:D,E,F三点共线.
网友回答
证明:如图,连接OA、OD,并延长OD交⊙O于M,
则OD⊥BC,,
∴A、E、M三点共线,
又AE、AF是∠A及其外角平分线,
∴AE⊥AF,
∵HE⊥AE,HF⊥AF,
∴四边形AEHF为平行四边形,
∴AH与EF互相平分,设其交点为G,
于是,AG=AH=EF=EG,
∵OA=OM,OD∥AH,
∴∠OAM=∠OMA=∠MAG=∠GAE,
∴EG∥OA?????????? ①
又O、H分别是△ABC的外心和垂心,且OD⊥BC,
∴OD=AH=AG,
∴四边形AODG为平行四边形,
∴DG∥OA,②
由①②可知,D、E、G三点共线,
而F在EG上,
∴D、E、F三点共线.
解析分析:根据AE平分∠BAC,M为的中点,可证A、E、M三点共线,根据已知证明EG∥OA,DG∥OA,可证D、E、G三点共线,而F在EG上,故可证D、E、F三点共线.
点评:本题考查了三角形外接圆的性质在证明三点共线问题中的运用.关键是利用平行线,圆周角定理,垂径定理证明三点共线.