已知:如图,在正方形ABCD中,AB=8,点E在边AB上点,CE的垂直平分线FP 分别交AD、CE、CB于点F、H、G,交AB的延长线于点P.(1)求证:△EBC∽△EHP;(2)设BE=x,BP=y,求y与x之间的函数解析式,并写出定义域;(3)当BG=74
网友回答
(1)证明:∵在正方形ABCD中,∠ABC=90°,PH⊥CE,
∴∠PHE=∠CBE=90°(1分)
又∵∠BEC=∠HEP,
∴△EBC∽△EHP;
(2)在Rt△BCE中,CE2=BE2+BC2=x2+64.(1分)
∵△EBC∽△EHP,
∴BEEH=CEEP
======以下答案可供参考======
供参考答案1:
如图,已知,在正方形ABCD中,AB=8,点E在边AB上,CE的垂直平分线FP分别交AD、CE、CB于点F、H、G,交AB的延长线于点P
(1)求证:△EBC相似于△EHP
因为FH是CE的垂直平分线,所以:CE⊥FP
则,∠EHP=90°
已知ABCD为正方形,所以∠EBC=90°
所以,∠EBC=∠EHP
又,∠BEC=∠HEP(其实就是同一个角)
所以,Rt△EBC∽Rt△EHP
(2)设BE=X,BP=Y,求y与x之间的函数解析式和X的取值范围
已知正方形ABCD的边长为8,在Rt△EBC中由勾股定理有:
CE^2=BE^2+BC^2=x^2+64
所以,CE=√(x^2+64)
已知FP为CE的垂直平分线
所以,HE=CE/2=[√(x^2+64)]/2
已知BE=x,BP=y,则:EP=BE+BP=x+y
由(1)的结论知,△EBC∽△EHP
所以,CE/PE=BE/HE
则,√(x^2+64)/(x+y)=x/[√(x^2+64)/2]
===> (x^2+64)/2=x(x+y)
===> x^2+64=2x(x+y)=2x^2+2xy
===> 64-x^2=2xy………………………………………………(1)
===> y=(64-x^2)/2x
因为x在AB上,所以:0<BE=x<8
综上,y=(64-x^2)/2x,(0<