若?ABCD边AB=6,AD=8,∠A=150°,DE平分∠ADC,则BE=________cm;DE=________.
网友回答
2 3+3
解析分析:由?ABCD边AB=6,AD=8,DE平分∠ADC,易证得△CDE是等腰三角形,即可求得CE的长,继而求得BE的长;
过点D作DF⊥BC于点F,可得∠DCF=30°,则可求得DF与CF的长,然后由勾股定理求得DE的长.
解答:∵四边形ABCD是平行四边形,
∴BC=AD=8,CD=AB=6,AD∥BC,
∴∠ADE=∠DEC,
∵DE平分∠ADC,
∴∠ADE=∠CDE,
∴∠CDE=∠DEC,
∴CE=DE=6,
∴BE=BC-CE=2;
过点D作DF⊥BC于点F,
∵∠A=150°,
∴∠ECD=∠A=150°,
∴∠DCF=30°,
∴DF=CD=3,CF==3,
∴EF=EC+CF=6+3,
∴在Rt△DEF中,DE====3=3+3.
故