已知函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是________.

发布时间:2020-08-09 04:27:32

已知函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是________.

网友回答

(-∞,1]
解析分析:由题意,复合函数f(x)在区间[1,+∞)上是增函数可得出内层函数t=|x-a|在区间[1,+∞)上是增函数,又绝对值函数t=|x-a|在区间[a,+∞)上是增函数,可得出[1,+∞)?[a,+∞),比较区间端点即可得出a的取值范围

解答:因为函数f(x)=e|x-a|(a为常数).若f(x)在区间[1,+∞)上是增函数
由复合函数的单调性知,必有t=|x-a|在区间[1,+∞)上是增函数
又t=|x-a|在区间[a,+∞)上是增函数
所以[1,+∞)?[a,+∞),故有a≤1
以上问题属网友观点,不代表本站立场,仅供参考!