如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同

发布时间:2020-08-06 12:11:58

如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)

网友回答

解:如图,过点C作CF⊥AB于点F.
设塔高AE=x,
由题意得,EF=BE-CD=56-27=29m,AF=AE+EF=(x+29),
在Rt△AFC中,∠ACF=36°52′,AF=(x+29),
则CF===x+,
在Rt△ABD中,∠ADB=45°,AB=x+56,
则BD=AB=x+56,
∵CF=BD,
∴x+56=x+,
解得:x=52,
答:该铁塔的高AE为52米.

解析分析:根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.

点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.
以上问题属网友观点,不代表本站立场,仅供参考!