如图,将△ABC绕顶点A逆时针旋转一角度,使点D落在BC边上,得到△ADE,此时恰好AB∥DE,已知∠E=35°,求∠DAC的度数.
网友回答
解:∵△ABC绕顶点A逆时针旋转一角度,使点D落在BC边上,得到△ADE,
∴AB=AD,∠B=∠ADE,∠E=∠C=35°,
∴∠B=∠ADB,
∵AB∥DE,
∴∠B=∠EDC,
∴∠ADB=∠ADE=∠EDC=60°,
∵∠ADB=∠C+∠DAC,
∴∠DAC=60°-35°=25°.
解析分析:根据旋转的性质得AB=AD,∠B=∠ADE,∠E=∠C=35°,则∠B=∠ADB,由AB∥DE得∠B=∠EDC,所以∠ADB=∠ADE=∠EDC=60°,然后根据三角形外角性质得∠ADB=∠C+∠DAC,把∠ADB=60°,∠C=35°代入计算即可.
点评:本题考查了旋转的性质:旋转前后两图形全等.也考查了三角形外角性质.