填空题已知多项式2ax4+5ax3-13x2-x4+2021+2x+bx3-bx4-1

发布时间:2020-07-27 12:38:17

填空题已知多项式2ax4+5ax3-13x2-x4+2021+2x+bx3-bx4-13x3是二次多项式,则a2+b2=________.

网友回答

13解析分析:根据多项式的次数的定义,可知此多项式中次数最高的项的次数为二,即高于二次的项的系数为0.故本题可先将多项式2ax4+5ax3-13x2-x4+2021+2x+bx3-bx4-13x3合并同类项,再分别令四次项系数、三次项系数为0,得出关于a、b的二元一次方程组,解此方程组求出a、b的值,然后代入即可得到a2+b2的值.解答:∵2ax4+5ax3-13x2-x4+2021+2x+bx3-bx4-13x3=(2a-b-1)x4+(5a-13+b)x3-13x2+2x+2021,
又∵此多项式为二次多项式,
∴,
解得.
所以a2+b2=22+32=13.
以上问题属网友观点,不代表本站立场,仅供参考!