如图,△ABC中,A1,A2,A3,…,An为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…(1)完成下表

发布时间:2020-08-11 14:22:35

如图,△ABC中,A1,A2,A3,…,An为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…

(1)完成下表:
连接个数?出现三角形个数(2)若出现了45个三角形,则共连接了多少个点?
(3)若一直连接到An,则图中共有个三角形.

网友回答

解:(1)连接个数123456出现三角形个数3610152128(2)8个点;
(3)1+2+3+…+(n+1)=(n+1)(n+2).
解析分析:(1)根据图形,可以分析:数三角形的个数,其实就是数AC上线段的个数.所以当上面有3个分点时,有6+4=10;4个分点时,有10+5=15;5个分点时,有15+6=21;6个分点时,有21+7=28;7个分点时,有28+8=36;
(2)若出现45个三角形,根据上述规律,则有8个分点;
(3)若有n个分点,则有1+2+3+…+n+1=(n+1)(n+2).

点评:此题注意数三角形的个数实际上就是数线段的条数.能够正确计算1+2+…+n+(n+1)=(n+1)(n+2).
以上问题属网友观点,不代表本站立场,仅供参考!