初一化简求值,已知abc=1,求a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)的值……提示:可以用分式的基本性质把异分母加法转化为同分母加法,如:a/(ab+a+1)=ac/c(ab+a+1)=ac/(1+ac+c)
网友回答
a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)
=ac/(abc+ac+c)+1/(c+1+1/b)+c/(ac+c+1)
=ac/(1+ac+c)+1/(c+1+ac)+c/(ac+c+1)
=(ac+1+c)/(1+ac+c)
=1======以下答案可供参考======
供参考答案1:
特殊值法,令a=b=c=1
答案为1供参考答案2:
1供参考答案3:
原式=ac/(ac+c+1)+ab/(ab+a+1)+c/(ac+c+1)=(ac+c)/(ac+c+1)+1/(ac+c+1)=(ac+c+1)/(ac+c+1)=1